ADDITIVE REPRESENTATION IN THIN SEQUENCES, IV:
LOWER BOUND METHODS

J. BRUDERN, K. KAwADA AND T. D. WooLEY!

ABSTRACT. We describe a method for establishing that values from a fixed polynomial sequence are repre-
sented frequently by some prescribed sum of powers of natural numbers. As an illustration of this method,
we show that for at least X129/136 of the integers n with 1 < n < X, a fixed quadratic polynomial ¢(n)
may be written as the sum of five cubes of positive integers. A similar result is established for the sum of a
square and three cubes of positive integers.

1. Introduction. Technology currently available in the additive theory of numbers frequently lacks
sufficient power to establish that all large natural numbers (perhaps constrained by inherent congruence
conditions) are represented in a prescribed form. Even the weaker conclusion that almost all natural
numbers are thus represented is often beyond our grasp. In such circumstances, one must seek instead
to establish that natural numbers are frequently represented in the prescribed manner. In previous
parts of this series (see Briidern, Kawada and Wooley [4, 5, 6]), we have developed and explored
an approach to additive problems in which one seeks to show that almost all natural numbers in a
fixed polynomial sequence are represented in some prescribed manner, thereby establishing non-trivial
estimates for exceptional sets in thin sequences. We now adapt this technology so as to handle analogous
problems in which a non-trivial estimate for the exceptional set remains inaccessible, seeking instead to
demonstrate that integers from the fixed polynomial sequence are frequently represented. As such, our
results provide information which may be regarded as more enlightening than that available hitherto in
those problems accessible to our methods.

Rather than embark immediately on a discussion of the general features of our rather flexible method,
we instead follow the pattern established in previous parts of this series, illustrating the type of conclu-
sion now available with a discussion of Waring’s problem for cubes. So far as this paper is concerned, the
motivating conjecture associated with the latter topic is the assertion that a positive proportion of the
natural numbers are represented as the sum of three cubes of positive integers. The sharpest conclusion
currently available in this direction shows that when z is large, slightly more than /12 of the natural
numbers up to x are thus represented (see Vaughan [14] for a slightly weaker conclusion, and Wooley
[19] for the most recent progress on this problem). While it is known that almost all natural numbers
are the sum of four positive cubes (see Briidern [3], and Wooley [19] for the latest developments), rather
less is known if one restricts the aforementioned natural numbers to a thin sequence of polynomial
values. In a previous part of this series (see Briiddern, Kawada and Wooley [4]), we established that for
any fixed quadratic polynomial ¢ € Z[t], all but O(2'%/2%) of the natural numbers n up to x satisfy
the property that ¢(n) is represented as the sum of six cubes of positive integers. A similar, though
somewhat weaker, conclusion was also provided for cubic polynomials ¢. We presently lack sufficient
power to establish that almost all values of a fixed quadratic polynomial are the sum of five cubes of
positive integers. A variant of the method introduced in [4], however, shows that the former values
occur frequently as sums of five cubes.

It is convenient henceforth to describe a polynomial ¢ € Q[t] as being an integral polynomial if,
whenever the parameter ¢ is an integer, then the value ¢(t) is also an integer. When ¢ is an integral
polynomial, denote by Ny(X) the number of integers n, with 1 < n < X, for which ¢(n) is the sum of
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five cubes of positive integers. Following work on some auxiliary estimates in §§2 and 3, we advance in
§4 to establish the lower bound for Ny(X) recorded in the following theorem.

Theorem 1.1. Let ¢ be an integral quadratic polynomial with positive leading coefficient. Then Ny(X) >
Y'129/136

We discuss a second consequence of our methods in §5, where we establish that integers represented
as the sum of a square and three cubes of positive integers occur frequently amongst the values of
certain quadratic polynomial sequences. We consider an integral quadratic polynomial of the shape
é(t) = t2 — a, for a fixed integer a, or ¢(t) = = — t2, for a sufficiently large natural number Z. In the
latter respective cases, when N is sufficiently large in terms of a, or when N = Z'/2, we denote by
Xy (N) the number of integers n with 1 < n < N for which ¢(n) is the sum of a square and three cubes.

Theorem 1.2. Let ¢ be a quadratic polynomial of the shape discussed above. Then for any fixed positive
number ¢, one has Xy(N) > N20/21—¢

We remark that subject to a suitable extension of the work of Hooley [12] and Daniel [9, 10], one
can replace the quadratic polynomials ¢ discussed above by arbitrary quadratic polynomials.

It may be illuminating to describe our general strategy for lower bound problems. Given a positive
integer n and sets Ajq, ..., As of positive integers, we investigate the number r(n) of representations of
n in the shape

n=a+as+---+as, (1.1)

with a; € A; (1 <7 <s). When B C N, we define Ng(X) to be the number of integers n € [1, X]N B
possessing a representation in the shape (1.1). In order that it be possible to establish a non-trivial
lower bound for Np(X), the equation (1.1) must plainly possess infinitely many solutions with n € B
and a; € A; (1 < i < s). This important prerequisite excludes, for the present, the possibility of
establishing an analogue of Theorem 1.1 in which only four cubes are employed.

Define the generating functions

filay= Y elax) (1<i<s),

reA;N[1,X]

2Tz

where e(z) denotes e“™**. Then by orthogonality, one has

r(n) = /0 fila)... fs(a)e(—an)da.

Denote by Z(X) the set of integers n with n € BN [1, X] which possess a representation in the shape
(1.1). Define also the generating functions

k(o) = Z e(an) and K(a)= Z e(an).

neBN[1,X] neZ(X)

Then plainly,

Z ]/0 fila)... fs(a)e(—an)da = Z /0 fila)... fs(a)e(—an)da,

neBN[1,X

whence . .
/ fila) ... fs(a)k(—a)da = / fila) ... fs(a) K(—a)da. (1.2)
0 0

Our strategy is now to obtain a lower bound for the left hand side of (1.2) by means of the Hardy-
Littlewood method, or any viable substitute, and also to obtain an upper bound for the right hand side
of (1.2), depending on card(Z(X)), by appealing to Holder’s inequality. By combining these bounds,
we deduce a lower bound for card(Z(X)).

By way of illustration, consider the situation in which the set B comprises the natural numbers lying
in some fixed quadratic sequence. Here we take advantage of the fact that the exponential sum k()
is a complete Weyl sum, and hence provides crucial assistance in the analysis of the left hand side of
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(1.2). In order to obtain an effective upper bound for the right hand side of (1.2), on the other hand,
one might seek to exploit the underlying arithmetic structure of the set B via an application of Holder’s
inequality in the shape

/01 fila)...fs(a)K(—a)da
< 1 1fi(@) ... fo(@)]|Y3da ver 1K (o) dax v (1.3)
0 0

Here, a straightforward counting argument shows that
1
/ [K()[{da < X (card(Z(X)))2,
0

and then by combining (1.2) and (1.3), one obtains the lower bound
1 2
card(Z(X)) >X "¢ </ fila)... fs(a)k(—a)da)
0
1 —3/2
< ([ 18t £ Paa)
0

It is clear how, in principle, one now obtains a lower bound for the cardinality of Z(X) in this case
involving quadratic polynomials, and of course the strength of this bound will be determined by available
upper bounds for the mean value

/Offl(a)---fs(a)\4/3da.

Naturally, the approach one takes in estimating the right hand side of (1.2) will vary according to
the arithmetic properties of the underlying set B. We direct the reader’s attention to our previous work
[4, 5, 6] for inspiration concerning possible strategies for addressing such issues.

Throughout, the letters £ and n will denote sufficiently small positive numbers. We take P to be
the basic parameter, a large real number depending at most on €, n, and any coefficients of implicit
polynomials if necessary. We use < and > to denote Vinogradov’s well-known notation, implicit
constants depending at most on €, n and implicit polynomials. Summations start at 1 unless indicated
otherwise. In an effort to simplify our analysis, we adopt the following convention concerning the
parameter . Whenever ¢ appears in a statement, we assert that for each £ > 0 the statement holds for
sufficiently large values of the main parameter. Note that the “value” of ¢ may consequently change
from statement to statement, and hence also the dependence of implicit constants on ¢.

2. The unfiltered lower bound. In our first step towards the proof of Theorem 1.1, we establish
a lower bound for the number of solutions of a diophantine equation naturally associated with sums
of five cubes and a quadratic polynomial. One might regard our lower bound here as an “unfiltered”
estimate for N, (), since each value of the quadratic polynomial is counted with a weight essentially
equal to the number of its representations as the sum of five cubes of positive integers. Later, in §4, we
filter out as many of the unweighted values as our methods permit.

We begin by fixing some notation. Let ¢ be an integral quadratic polynomial with positive leading
coefficient, let N be a large real number and write

P=¢(N)/3, M=P'YS, R=p",

where 7 > 0 is supposed to be sufficiently small. We remark that the first of these relations implies
that P =< N2/3. When Q is a positive number, we define the set of R-smooth numbers up to Q by

AQ,R)={n € [1,Q]NZ : p prime, pln = p < R}.

We then define the exponential sums

fla)= Y e(aa®), gla)= 3 elay’), k@)= 3 elas(n)),

<P yE€A(P,R) N/2<n<N
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TOEEDYED'S S )

1<29 <M 29 M <p<2Itt M 2€ A(P/(27 M), R)
p=2 (mod 3)

Here and elsewhere, we reserve the letter p to denote a prime number. Our arguments are based on
an application of the circle method, and it is therefore useful to introduce some notation for Hardy-
Littlewood dissections. When 1 < X < N/2, define the major arcs (X)) as the union of the intervals

M(q,a; X) ={a€[0,1) : |ga—a] < XN ?},
with 0 < a < ¢ < X and (a,q) = 1. We then define the corresponding set of minor arcs by m(X) =

[0,1) \ M(X). We now establish the promised lower bound.

Lemma 2.1. One has

/O F(a)g(a)h(a)*k(—a)da > NP2, (2.1)

Proof. We actually obtain, by an application of the Hardy-Littlewood method, an asymptotic formula
for the integral on the left hand side of (2.1). In the interest of brevity, we write 9t = 9(P*?) and
m = m(P*3). We define also a thin set of major arcs 9 by writing L = (log P)*/1%°, and taking 91 to
be the union of the arcs

N(g,a) ={a€[0,1) : |a—a/q < LN?},

with 0 <a < ¢ <L and (a,q) = 1.

The contribution of the minor arcs m is easily bounded by means of Weyl’s inequality (see, for
example, Vaughan [16], Lemma 2.4), together with available mean value estimates for cubic exponential
sums. Thus we have

sup |k(a)| < NP==2/3,

acm

and by Hua’s lemma (see Lemma 2.5 of Vaughan [16]),
1 1
/ h(a)|*da < P?*, / f(a)|*da < P,
0 0
Also, by an obvious adjustment of the proof of Lemma 1 of Vaughan [15],

/ |g 2|2da<<P13/4+317 (22)

Combining the above estimates through the medium of Hélder’s inequality, we obtain

/|f(a)g(a)h(a) k(— )yda< sup |k(a /|h |4da

acm
1/2
4d 2 24
Aumna /w ) da)
<<NP%+277. (23)
Write
q 2q
=Y elar®/a), Ssla,a) =Y e(ag(r)/q).
r=1 r=1
and

WWZAGWﬂM,%@Z/ (B (7)) dy

N/2

Define functions f*, k* on M for o € M(q, a; P*/3) C M by taking

[*(@) = ¢7'S5(q, a)vs(a — a/q), k() = (29)' Se(g, a)vg(a — a/q).
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Then the methods of Chapters 2 and 4 of Vaughan [16] show that

sup |f(e) — f*(a)| < P3¢, sup |k(a) — k*(a)| < P?/3Te, (2.4)
aEM aeM

and moreover that when o € (¢, a; P*/3) C M, one has

P N

* k* .
PO < G Pa—a < G N a7

(2.5)

Here we note that if the integral polynomial ¢ does not have integral coefficients, then necessarily ¢
has half-integral coefficients, and it is this observation which motivates our definition of Sy (g, a) above.
On making use of (2.4) in the argument used above to treat the minor arcs m, one readily finds that

| 1(k@) = 1 (@) F(a)g@)he)’lda < NPE. (2:6)
Next, on noting (2.5), it follows from Lemma 2 of Briidern [1] that
| @nte)da < P
m

and thus an application of Schwarz’s inequality, combined with (2.2) and (2.4), produces the estimate
[ I@)=F @) (@)g(a)h(e)lda
1/ 1/2
< P2/3+€( |k @h(@fda) / 9(a)h(0)*da)
m

< NPt (2.7)

On collecting together (2.3), (2.6) and (2.7), we may conclude thus far that

/0 fla)g(a)h( da—/ 1( (a)h(a)?’doz+O(NP3%+2’7). (2.8)

We now prune back to the thin major arcs 1. From (2.5) we readily deduce that whenever ¢t > 4
one has

/fm Ik (a)|'da <; N*2. (2.9)

Also, a standard application of the Hardy-Littlewood method, based on Lemma 4.9 of Vaughan [16],
shows that for ¢ > 4 and X > 1, one has

/ |F*(a)[fdo < PT3 X5 (=4)/3, (2.10)
IM\IM(X)

Next, on considering the underlying diophantine equation, it follows from Theorem 2 of Vaughan [13]
that

1
/ |h(a)|Bda < P°. (2.11)
0
Finally, as a consequence of Theorem 2 of Briidern and Wooley [7] it follows that whenever ¢ > 10, one
has )
/ lg(a)|'da < P'73, (2.12)
0

An application of Holder’s inequality now yields

/ £ (@) (—a)g(@)h(a)?|da
M\ N
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so that on noting that M(L) C N, and collecting together (2.9)—(2.12), we obtain the estimate
|17 @k (~a)g(@)h(a)*|da < NP (1o P) "
m\N

for a suitable positive number 7. Consequently, on recalling (2.8), we now infer that

1
/ fl@)g(@)h(a)’k(—a)da = / @)k (=a)g(a)h(@) da
0 n
+O(NP?*(log P)™7). (2.13)
The major arcs M are sufficiently narrow and sparse that the methods of Vaughan [14] and §4.4 of
Vaughan [16] may be successfully applied. It follows from Lemma 8.5 of Wooley [17] (see also Lemma
5.4 of Vaughan [14] for a related conclusion) that there exists a positive number ¢, depending only on

7, such that

sup |g(a) — cf*(a)| < PL™1°. (2.14)
aeMn

Suppose next that a € M(q,a) C N. Write
1%
o(BV) = [ eloran
0

Then on recalling the definition of h(a), we find from Lemma 8.5 of [17] that there exist positive
numbers ¢; (1 <27 < M"), each uniformly bounded away from zero, such that

h(a) =) (ejq7 " Ss(g,ap*)o(pB; P/ (27 M)) + O(PL™' /(27 M) ,
Jp
and here the summations are over j and p with

1<22 <M, 22M<p<2T'M and p=2 (mod 3).

However, the condition p > 2/M occurring in the summation, together with the implicit hypothesis
that ¢ < L < M, ensures that p{ q. Consequently, for each prime p occurring in the latter summation,
it follows via a change of variable in the implicit summation that S3(q,ap®) = S3(q,a). Define the
function h*(a) on a € N(q,a) C N by taking

h*(a) = q ' S5(q, a)w(a — a/q),

where we write

wB) = > ¢ Y pluBPp/(2M)). (2.15)
1<29<M™ 29 M<p<2Iti M
p=2 (mod 3)

Then following an obvious change of variable, we arrive at the estimate

sup |h(a) — h* ()] < PL™1°, (2.16)
aeM

Collecting together (2.14) and (2.16), and writing
T(q,a) = (2¢°) 7' Sp(q, —a)S3(g,a)® and  u(B) = vs(—B)vs(B)*w(B)?,
we deduce that when a € 9(g,a) C N, one has
|f*(@)k* (—a)g(a)h(a)® — ¢T(q, a)u(a — a/q)| < NPPL™10,

Since the measure of M is O(L3P~3), it follows that

/ﬁ fH(@)k*(—a)g(a)h(a)*da = ¢S(L)J(L) + O(NP?*L™1), (2.17)
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where we write
L/N?

&L)= > Y T(ga) and J(L)= / u(B)dg. (2.18)

1<q¢<L a=1 —L/N?
(a,q)=1

The bounds
T(g,a) < q "% and u(B) < NP(14 N?|g[)~1/

are essentially immediate, respectively, from Theorem 4.2 of Vaughan [16], and from (2.15) above and
Lemma 2.8 of Vaughan [16] via the prime number theorem. Thus a routine argument permits the
replacement of the integral in (2.18) by the singular integral

1= O; u()dp,

and also allows the completion of the sum in (2.18) to the singular series

S=Y > Tl(ga),

g=1 a=1

(a,q)=1

with acceptable errors which contribute at most O(NP?L~1/10) within (2.17).

Standard endgame technique from the theory of the Hardy-Littlewood method (see §2.6 of Vaughan
[16]) shows with ease that & > 1. Meanwhile, whenever p; is a prime number with 29 M < p; < 27iT1 )M
(1 =1,2,3), an application of Fourier’s integral formula rapidly establishes that

[ vas@? T P27 2))as > NP

- i=1

whence, by the prime number theorem,

3
J>>NP2< Y og > p—1> > NP2

1<29<Mn 29 M<p<2itipnyg
p=2 (mod 3)

We therefore conclude from (2.17) that
| 7@k (~a)g(a)h(a)da > NP
N

whence the desired conclusion (2.1) follows immediately from (2.13). This completes the proof of the
lemma.

3. An auxiliary mean value estimate. In this section we derive an upper bound for an auxiliary
mean value crucial to the execution of the program outlined in the introduction. Here we again apply
the Hardy-Littlewood method, but since we do not seek an asymptotic formula, our argument is in
some ways less complex. It is convenient for future use to record the following mean value estimate.

Lemma 3.1. Let U(X) denote the number of solutions of the diophantine equation

oy — a3 =y + 5 — 5 — vl
with 1 <x; <2X (i=1,2) and y; € A(X,X") (1 <j <4). Then provided that n is sufficiently small,
one has
U(X) < X13/4=2n,

Proof. The conclusion of the lemma follows from Theorem 1.2 of Wooley [18].

We now come to the ingredient crucial to the strength of the lower bound recorded in the statement

of Theorem 1.1. It may be worth noting that the integral estimated in the following lemma is expected
to be of order P'1/3.
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Lemma 3.2. One has 1
0

where § = 7/136 — 7, for a sufficiently small but positive number T.

Proof. With the notation defined in the preamble to Lemma 2.1, we now write ¢ = 90t(P'1/8+37) and
p =[0,1)\'B. Then, by applying Theorem 3 of Briidern and Wooley [8] with Y = 2/ M for 1 < 27 < M",
it follows from an application of Holder’s inequality that

/v 0)|da < P4 (3.1)

Moreover, on considering the underlying diophantine equation, it follows from Lemma 3.1 that
/ |h(a)g(e)?|?do < P3/477, (3.2)

Then on applying Holder’s inequality, we deduce from (3.1) and (3.2) that

4 2 22 1/3
[ i@t da < ( [ 15(@)h(e)’ o) (] m@ote?aa)

< pl/3+s, (3.3)

For the treatment of the major arcs we use the function f*(«) applied in the proof of Lemma 2.1,
extended to B in the natural way. By Lemma 4.9 of Vaughan [16] and straightforward estimates, one
finds that

A |f*(a)[*da < PYTE, (3.4)
and from Theorem 4.1 of Vaughan [16] we have
sup [f(@) = f*(a)] < P10, (3.5)
Note first that the bound
/ f(@)h(a)?2da < PY3/4+30

follows from the proof of Lemma 1 of Vaughan [15], in much the same way as (2.2). Then, applying
(3.5) and Holder’s inequality together with the estimate (2.2) and the one just obtained, we derive the
bound

150 = £ @ L@ lg(e)he’ o
11 1 2/3
P1st2n 2/3 2 2d 2 24
<t ([sanarpan) ([ o@n(?eio)
< Pt (3.6)

Consequently, on combining (3.3) and (3.6), we obtain

[ r@stamer e < [ [ @PPls@nar P+ P
Next we apply Hoélder’s inequality in combination with (2.2), (2.11), (3.4) and (3.5) to obtain
15 @P15(0) = 7 )P lgegh(a)’ o

1/6
<<<P11/16+217)2/3 / |f*(a)|4da>

< ([ w@n@?an)™ ([ inaa)”

< P29/8+5n
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Thus, by (3.7) we have

1
/ [ (@)g(e)h()*[*da <</ ¥ (@)g(a)h(@)’[*Pda + P13+, (3.8)
0 B
But by considering the underlying diophantine equation, it follows from Hua’s Lemma (see Lemma 2.5
of Vaughan [16]) that
/ |g 3|2d0é < P5+E

and thus an application of Holder’s inequality in combination with (3.4) reveals that

/’f (a)?[**da < ( /!g h(a) 3!2da /|f \4da

< pli/3+e,

The conclusion of the lemma therefore follows immediately from (3.8).

4. Filtration: the proof of Theorem 1.1. It is now a simple matter to establish Theorem 1.1,
the insight required becoming transparent presently. Let Z(IN) denote the set of integers n with
N/2 < n < N for which the equation

p(n) = 2° + y° + (p121)° + (p222)® + (p323)°

is soluble with z < P, y € A(P, R), and for some j = j(i) with 1 < 27 < M", the variables p; and
z; satisfying 27M < p; < 2977'M, p; = 2 (mod 3) and z; € A(P/(2?M), R), for i = 1,2,3. Then
plainly the number of integers n with N/2 < n < N for which ¢(n) is the sum of five cubes, is at least
card(Z(N)). Moreover, it is apparent from the definition of Z(N) that necessarily

> [ sttena)e-astn)ia

N/2<n<N

whence, on writing

we may conclude that

/Of(a)g(&)h(a)gk(—a)dOé:/o fla)g(e)n(@)’ K (—a)da. (4.1)

On applying Holder’s inequality to (4.1), and making use of Lemma 2.1, we obtain

NP? < (/01 ]K(a)\4da>1/4</01 |f(a)g(a)h(a)3|4/3da>3/4.

But by a simple counting argument (see, for example, the proof of the upper bound (3.16) in Briidern,
Kawada and Wooley [4]), one finds that

/0 K()[{da < P¢ (card(Z(N)))?. (4.2)

We therefore conclude from Lemma 3.2 that
NP? <« (Pecard(Z(N)))/2Ppa+is,

whence s
Card(Z(N)) > N2p~27207¢,

On recalling that P =< N2/3 and § < the proof of Theorem 1.1 is complete.

136’
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5. Three cubes and a square. Our second illustration of the methods sketched in the introduction
concerns values of quadratic polynomials represented by sums of three cubes and a square of positive
integers. Let ¢(t) be an integral quadratic polynomial of the type discussed in the preamble to the
statement of Theorem 1.2, and let N be sufficiently large in the sense described in the latter. Write
P = N?/3. Let k() be the exponential sum defined in §2, and write also

t(a) = Z e(az®) and G(a)= Z w(z/P)e(azx?),
r<P3/2 x<2P
where
w(t) = exp(=1/(1 — (t - 1)%)).
Then by orthogonality, on considering the underlying diophantine equation, it follows from work of
Hooley [12] and Daniel [9], [10] that

/ ' H0)Gla)*K(—a)da > N*. (5.1)

Next, let Z(N) denote the set of integers n with N/2 < n < N for which the equation

¢(n) = 2* + yi + 43 + 43
is soluble with 1 < z < P3/2 and 1 < y; < 2P. Then card(Z(N)) plainly provides a lower bound for
X4 (N). Moreover, on defining the exponential sum K («) as in §4, we may argue as in the latter section
to establish the identity

/O Ha)G() k(—a)da = /0 )G K (—a)da,

whence by (5.1) and Hélder’s inequality,

1 3/4
N? < / |K(a)|4da / () G()?] 4/3da> . (5.2)
The first integral on the right hand side of (5.2) may be bounded as in (4.2), and thus we deduce that
~3/2
card(Z(N)) > N*~ ‘5 / t(a)G()?] 4/3da> . (5.3)

We next investigate the mean value on the right hand side of (5.3). With the notation introduced in
the preamble to Lemma 2.1, write & = 9(P%/7), £ =[0,1) \ &, and I*(X) = M(X) \ M(X/2). Then
by Weyl’s inequality, one has

sup |t(a)| < PH/4te sup  |t()| < P3/*ex 12, (5.4)
act aeEM*(X)

where we suppose that 1 < X < P3/2. Then by Hua’s lemma (see Lemma 2.5 of Vaughan [16]), on
considering the underlying diophantine equation, we have

/|t a)?|Y3da < P22/21+€/ 1G()|*da < PO4/21%2, (5.5)
Further, on noting that Theorem 2 of Briidern [2] delivers, for 1 < X < P'%/7 the upper bound
/ |G(a)|*da < PE(XT?2P~3 4 X2P~! 4+ P),
M= (X)
we deduce from (5.4) that for 1 < X < P'%/7 one has
/ ()G ()| do < PPTEX23(XT/2Pp3 4 X2P~! + P)
Mm*(X)

< pb4/21+e

Consequently, one obtains by a dyadic dissection of K the estimate
/ ()G () 4/3da < pB/2+e
whence by (5.5),
/ (@) G(a)? 4/3da < pb4/21+e

Substituting the latter bound into (5.3), we deduce that card(Z(N)) > N20/21=¢and this establishes
the conclusion of Theorem 1.2.
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